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1 Introduction

In some recent papers [1–3] we have studied finite size effects in the anomalous dimensions

of gauge invariant composite operators. More precisely we have addressed this issue by

performing the analysis in two special settings, i.e. in the planar limit of the superconformal

N = 4 SYM theory and in the exactly marginal deformation of N = 4 SYM theory

preserving N = 1 supersymmetry.

The interest in this kind of calculation stems from the quest for an ever deeper un-

derstanding of the AdS/CFT correspondence [4] and the comparison of the spectra of the

gauge theory and the string theory. On the gauge theory side important progress has been

achieved thanks to the realization that some sectors of the theory can be described in

terms of quantum spin chains for which in many cases a Hamiltonian, an asymptotic Bethe

ansatz [5–9] and even an exact, factorized S-matrix corrected by a dressing phase [10–

13] are available. These results were primarily obtained for the anomalous dimensions of

operators of infinite length whose analysis is considerably simplified.

When finite size effects become important new interactions need to be taken into ac-

count. On the string theory side recent papers have studied finite size contributions in

the spectrum of magnons [14–23]. On the field theory side wrapping interactions [9] have

been analyzed [24] in the N = 4 SYM theory. The anomalous dimension of the composite

operator tr(φ[Z, φ]Z) has been computed at four loops in [1, 2, 25, 26].

In [3] we have considered finite size effects in a less symmetric setting. More precisely

we have focused on the β-deformed N = 4 SYM theory obtained from the original N = 4

theory by modifying the superpotential via the substitution

ig tr (φψ Z − φZ ψ) −→ ih tr
(

eiπβ φψ Z − e−iπβ φZ ψ
)

(1.1)
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with h and β complex constants. In [27] it was argued that this theory becomes con-

formally invariant if the constants h and β satisfy one condition. Indeed in [28] it has

been shown that for a real deformation parameter β this deformed N = 1 theory becomes

superconformal, in the planar limit to all perturbative orders, if

hh̄ = g2 . (1.2)

The AdS/CFT correspondence predicts that this deformed theory is equivalent to the

Lunin-Maldacena string theory background [29]. The existence of integrable structures in

the deformed string background has been analyzed in [30–32]. Finite size effects of single

magnons were discussed in [33].

A new feature of the deformed theory as compared to the situation in N = 4 SYM

is given by the fact that one-impurity states are not protected by supersymmetry. In [3]

we have computed the anomalous dimensions of one-impurity and two-impurity operators

up to four-loop order and made some partial calculations and conjectures for the simplest

single-impurity operator O1,L = tr(φZL−1) at higher order L in perturbation theory.

This paper is the natural extension of the work presented in [3]. Here we want to

compute in the planar limit the anomalous dimensions of the one-impurity operators O1,L =

tr(φZL−1), including wrapping contributions at their critical order L.

The anomalous dimension of a composite operator O can be obtained from the diver-

gent diagrams that contribute to its one-point function. In dimensional regularization, if

the operator is renormalized multiplicatively, it is simply given by

γ(O) = lim
ε→0

[

εg
d

dg
logZO(g, ε)

]

, (1.3)

where

Oren = ZOObare (1.4)

and ε is the dimensional regularization parameter. Thus we want to compute up to L loops

all the divergent contributions to the one-point function of the operator O1,L and isolate

the 1/ε poles. At first sight this program looks very ambitious and complicated. In fact

the use in conjunction of integrability properties and of superspace techniques proved so

powerful that we were able to reduce and structure the whole calculation into a manageable

form. The computation is organized through the sequence of the following steps:

First we obtain the contributions to the anomalous dimension which do not contain wrap-

ping interactions, up to perturbative order L. This we achieve by starting from the knowl-

edge of the anomalous dimensions of long single-impurity states of the SU(2) sector. If

the corresponding operator Oas has such a length that wrapping interactions do not con-

tribute, the anomalous dimension at a given perturbative order can be obtained from the

all-loop result [28]

γ(Oas) = −1 +

√

1 + 4λ
∣

∣

∣
q −

1

q

∣

∣

∣

2
= −1 +

√

1 + 16λ sin2(πβ) , (1.5)

where λ = g2N
16π2 . This result is correct only in the asymptotic regime.
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Thus in order to obtain the anomalous dimensions for O1,L up to order L, we need to

subtract the range-(L + 1) contributions from the L-order expansion of (1.5) and finally

compute explicitly the wrapping diagrams at the critical order L.

The number of wrapping graphs that one has to consider at L loops becomes so large

that in [3] we thought the calculation could not be performed exactly. In fact a judicious

analysis in terms of superfields and supergraphs allows to discover a huge number of can-

cellations such that in the end only a few restricted classes of supergraphs are shown to be

relevant. In the next section we consider these superspace Feynman diagram calculations,

showing how the cancellations occur and performing the D-algebra on the relevant contri-

butions. In section 3 we study the integrals. In section 4 we comment on our results. The

strategy to explicitly compute the required integrals can be found in the appendix.

2 The power of superspace

We want to compute the anomalous dimension of the composite operator O1,L = tr(φZL−1),

including wrapping contributions up to L loops in the planar limit following the strategy

introduced in [1–3]. While doing similar calculations at lower loop order we learned that

superspace techniques are very efficient for organizing the work and moreover we found

many unexpected cancellations to occur. In this section we will review briefly the general

rules of the N = 1 superspace formalism, primarily to set our notations, and we will

explain the reasons that lead to the many cancellations we had noticed in our previous

works. It has been the realization of these general great simplifications that encouraged us

in undertaking this project.

The action of N = 1 β-deformed SYM is described in terms of one real vector superfield

V and three chiral superfields φ,ψ,Z that we denote collectively by φi. Following the

notations and conventions of [34] it is given by

S =

∫

d4xd4θ tr
(

e−gV φ̄i egV φi
)

+
1

2g2

∫

d4xd2θ tr (WαWα)

+ ih

∫

d4xd2θ tr
(

eiπβ φ1 φ2 φ3 − e−iπβ φ1 φ3 φ2

)

+ h.c. ,

(2.1)

where Wα = D̄2
(

e−gV Dα egV
)

, and V = V aT a, φi = φa
i T

a, i = 1, 2, 3, T a being matrices

satisfying the SU(N) algebra

[Ta, Tb] = ifabcTc (2.2)

and normalized as

tr(TaTb) = δab . (2.3)

In order to compute Feynman diagrams we need propagators and vertices that can be easily

obtained from the action (2.1). The superfield propagators are given in momentum space by

〈V aV b〉 = −
δab

p2
, 〈φa

i φ̄
b
j〉 = δij

δab

p2
. (2.4)

– 3 –
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The vertices that we need are

V1 = gfabcδ
ij φ̄a

i V
bφc

j , V2 =
g2

2
δijfadmfbcmV

aV bφ̄c
iφ

d
j ,

V3 = −hfabc(e
iπβ φa

1 φ
b
2 φ

c
3 − e−iπβ φa

1 φ
b
3 φ

c
2) ,

V̄3 = −h̄fabc(e
−iπβ φ̄a

1φ̄
b
2φ̄

c
3 − eiπβ φ̄a

1φ̄
b
3φ̄

c
2) ,

(2.5)

with additional D̄2, D2 factors for each chiral, antichiral line respectively. It is easy to

realize that since our operator O1,L has length L, vertices containing three or more vector

superfields V never enter the L-loop calculation.

As anticipated in the introduction essentially all diagrams without wrapping interac-

tions need not be examined since their contribution to the L-loop anomalous dimension of

O1,L is simply obtained from the L-order expansion of the asymptotic result in (1.5)

γas
L = αL λ

L sin2L(πβ) , αL = −(−8)L
(2L− 3)!!

L!
. (2.6)

In fact the above result is valid for single-impurity states of length greater than L. Thus we

need correct it by subtracting the range-(L+1) contributions. Here is where our Feynman

diagram computation really starts. It is organized in two separate steps:

(a) subtraction of the range L+ 1 diagrams

(b) computation of all the L-loop wrapping diagrams.

According to the general procedure one has to consider a given supergraph and com-

plete the D-algebra in order to reduce it to a standard divergent graph. All graphs that

give rise to finite integrals are immediately discarded since they are not relevant for the

computation of the anomalous dimension of the composite operator. In [2] we have shown

that in order to produce divergent contributions the D-algebra must be performed in such

a way that no spinor derivative is moved out onto the external lines, except for deriva-

tives on scalar propagators that do not belong to any loop. The following analysis makes

substantial use of this very strong result.

Now we start considering the Feynman diagrams that we have to subtract in order to

cancel the unwanted range-(L+ 1) contributions contained in (2.6). As in the lower order

examples considered in [3], we have to subtract only one diagram (and its reflection) con-

structed entirely in terms of chiral interactions. It is shown in figure 1 and denoted by SL.

Introducing the same notations for the chiral structures of the supergraphs as in [3], we find

SL → (g2N)LJL [χ(1, 2, . . . , L) + χ(L, . . . , 2, 1)]

= (g2N)LJL (q − q̄)2
[

q2(L−1) + q̄2(L−1)
]

,
(2.7)

where JL is given by the L-loop integral in figure 2a. Thus the term to be subtracted

from (2.6) is

δγ s
L = −2L lim

ε→0
(εSL) . (2.8)

– 4 –
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Figure 1. L-loop, range-(L+ 1) diagram SL

(a) JL (b) KL

Figure 2. L-loop integrals from diagrams SL and WL,0

Figure 3. L-loop wrapping diagram WL,0

(a) WL,1 (b) WL,2

· · ·
(c) WL,L−1

Figure 4. Sample diagrams from different classes

Now we concentrate on the wrapping diagrams. There is one wrapping graph (and its

reflection) with only chiral interactions and it is depicted in figure 3. With the identification

of the first and (L+1)-th lines we can describe its chiral structure in terms of the deformed

ones and we find

WL,0 → (g2N)LKL [χ(1, L, L− 1, . . . , 2) + χ(L, 1, 2, . . . , L− 1)]

= (g2N)LKL (q − q̄)2
[

q2(L−1) + q̄2(L−1)
]

.
(2.9)

The integral KL is given in figure 2b.

Next we have all the wrapping diagrams which contain vector propagators. They can

be collected in different sets distinguished by their chiral structure and correspondingly the

number of vector lines that enter the graph. One representative for each set is shown in

figure 4. We have:

• graphs with chiral structure χ(L− 1, . . . , 2, 1) and 1 vector

• graphs with chiral structure χ(L− 2, . . . , 2, 1) + 1 single Z line, and 2 vectors

– 5 –
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Figure 5. Z line with two V1 vertices

(a) Block A (b) Block B (c) Block C

Figure 6. Building blocks for diagrams with vector interactions

...

• graphs with chiral structure χ(1) + (L− 2) single Z lines, and L− 1 vectors.

Since vectors can attach on the single Z lines via the V1 and V2 vertices in (2.5), the

number of diagrams that one produces in this way is very, very large. Now we are going to

prove that remarkable cancellations do occur. In fact we need only consider graphs with

only V2 vertices on the single Z lines since all the diagrams that contain any V1 vertex on

a single Z line do actually cancel out completely.

The proof can be organized as follows:

Let us consider a generic diagram where a single Z line has two vectors attaching to it via

two V1 vertices as shown in figure 5. This structure appears in any of the different sets of

diagrams WL,2, . . . ,WL,L−1 depicted in figure 4. There are only three distinct possibilities

to attach the vector on the right hand side of figure 5 to the rest of the graph, corresponding

to the structures shown in figures 6a, 6b and 6c.

We examine the three situations separately and prove the complete cancellation of the

divergent contributions. All the possible diagrams coming from each class are shown in

figures 7, 8 and 9.

• Class A (figure 7):

The diagram A1 is finite.

Performing part of the D-algebra for the diagram A3 one immediately obtains the

same structure of the diagram A2, with a different sign due to the � = −p2 cancelling

one propagator. Since the two diagrams have the same color factor, their divergent

parts sum up to zero.

• Class B (figure 8):

For the diagrams B1 and B2 a partial D-algebra shows that they produce the same

result while the opposite color factors make the total divergent part vanish.

The diagram B3 is finite.

– 6 –
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(a) A1 (b) A2 (c) A3

Figure 7. Diagrams of class A

(a) B1 (b) B2 (c) B3

Figure 8. Diagrams of class B

(a) C1 (b) C2 (c) C3

(d) C4 (e) C5

Figure 9. Diagrams of class C

• Class C (figure 9):

For diagrams C1 and C2 we have the same situation as for B1 and B2 and the

divergent part of the two diagrams cancels out.

For the diagrams C3 and C4 the cancellation occurs following the same pattern as

for the diagrams A2 and A3.

The diagram C5 is finite.

We conclude that the only relevant diagrams with vectors are the ones in which the

vectors interact with single Z lines through the V2 vertex. In each set the number of

contributing graphs is now reduced to at most four, as depicted in figure 10.

The D-algebra can be performed straightforwardly and it is easy to realize that the

sum of the graphs with j vectors produces the same momentum integrals as the sum of the

diagrams with L− j − 1 vectors.

– 7 –
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(a) WL,1

.

.

.

(b) WL,j 0 < j < L − 1

.

.

.

(c) WL,L−1

Figure 10. Relevant diagrams after cancellations

We denote the combined color and flavor factors for the various chiral structures by

CL,j , where the subscript j stands for the number of vectors entering the diagrams. Then

we have

CL,j = (q − q̄)2
[

q2(L−j−1) + q̄2(L−j−1)
]

= −8 sin2(πβ) cos[2πβ(L− j − 1)] (2.10)

for j = 0, . . . , L− 1.

Using these factors, we can write the contributions from each class:

WL,0 − SL = (g2N)L CL,0(KL − JL) ,

...

WL,j = 2(g2N)L CL,jI
(j+1)
L ,

...

WL,L−1 = −(g2N)L CL,L−1(KL − JL) ,

(2.11)

where the integrals I
(j)
L are shown in figure 11a.

These integrals satisfy the relation

I
(j)
L = −I

(L−j+1)
L . (2.12)

– 8 –
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1 j − 1

j

j + 1

(a) I
(j)
L (b) PL

Figure 11. L-loop momentum integrals

The combination (KL − JL), which is relevant for (WL,0 − SL) and for class WL,L−1, can

be written in terms of I
(1)
L and of the integral PL (shown in figure 11b) as

KL − JL = PL − 2I
(1)
L . (2.13)

We can now collect all these results and obtain the correct value for the anomalous di-

mension:

γL(O1,L) = γas
L + δγL(O1,L) . (2.14)

Since both the PL and the I
(j)
L are free of subdivergences, their Laurent expansion in ε will

present only poles of the first order. Thus we can write

δγL(O1,L)=−2L(g2N)L lim
ε→0

ε

[

(CL,0−CL,L−1)PL(ε)−2

[ L
2
]−1

∑

j=0

(CL,j−CL,L−j−1)I
(j+1)
L (ε)

]

.

(2.15)

3 Computation of the integrals

In order to obtain the actual value of the anomalous dimension for a given loop order L,

we need the explicit values of the coefficients of the 1/ε poles in the expansions of the

momentum integrals PL and I
(j)
L .

For the integrals PL, this result is known as a function of L [35, 36]:

PL ∼
1

ε

1

(4π)2L

2

L

(

2L− 3

L− 1

)

ζ(2L− 3) , (3.1)

where the symbol ∼ means that we are only interested in the divergent part.

We were not able to find a general formula for the divergent parts of the integrals I
(j)
L

as functions of L and j. However, it is possible to find recurrence relations which allow to

compute the required integrals for any fixed value of L and j.

These recurrence relations can be found applying the technique of integration by parts,

as described in [35], where integrals with the same topology, but without scalar products

of momenta in the numerators, were considered. In order to follow this approach, we had

to generalize the triangle rule of [35] to the case of lines with momenta in the numerators.

The derivation of these generalized rules is shown in appendix A.1.

– 9 –
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Using the scalar rule (A.2), any I
(j)
L can be written in terms of a reduced set of integrals

with at most seven loops and with generic propagator weights for the lines coming out from

the operator insertion. An example of this procedure is presented in appendix A.2.

The fundamental integrals can be computed explicitly using the generalized rules.

For the integrals I
(1)
L , also the technique described in [36] can be used. This allowed

us to guess a general expression for I
(1)
L as a function of L:

I
(1)
L =

1

2
PL +

1

L

L−1
∑

k=3

(

h(L, k)

L− k

)

ζ(h(L, k) + 1)

=
1

2
PL +

1

L

L−3
∑

k=L−1−[ L−1
2

]

(

2k + 1

2k + 3 − L

)

ζ(2k + 1) +
1

2L
[1 + (−1)L](L− 2)ζ(L− 1) ,

(3.2)

where h(L, k) = 2(L− k− 1+ [k/2]). We could not apply the approach of [36] to the other

classes of integrals because we were not able to compute the needed higher-loop integrals

with generic propagator weights. For L ≥ 10 it also takes too long to extract the pole part

from the results which were obtained from the the recurrence formula. To find the results

up to L = 11 we have therefore employed GPXT [37] as described in appendix A.3.

Looking for a simple deformation of the formula for I
(1)
L , we were able to guess the

general expression for I
(2)
L :

I
(2)
L |L=2m =

1

2
PL −

1

L

L−3
∑

k=L−1−[ L−1
2

]

[

2L

L− 1
(L− 2 − k) − 1

](

2k + 1

2k + 3 − L

)

ζ(2k + 1)

−
1

L
(L− 2)(L− 1)ζ(L− 1) ,

I
(2)
L |L=2m+1 =

1

2
PL −

1

L

L−3
∑

k=L−[ L−1
2

]

[

2L

L− 1
(L− 2 − k) − 1

](

2k + 1

2k + 3 − L

)

ζ(2k + 1)

−
1

2
(L− 3)(L − 1)ζ(L) .

(3.3)

Both these formulae have been verified up to L = 11.

4 Concluding remarks

We explicitly computed all the relevant I
(j)
L up to L = 11. The corresponding results are

shown in appendix A.4.

First of all, we see that in all the cases we considered, wrapping interactions and

range-(L + 1) subtractions only produce transcendental contributions.

Moreover, a very precise transcendentality pattern appears, as can be seen from ta-

ble 1: for every value of L, the term with maximum degree of transcendentality is always

proportional to ζ(2L − 3). Then a given number of terms with consecutive, lower odd

degrees is present. This number is increased by one every two loops.

– 10 –
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L Transcendental terms

L = 4 ζ(3), ζ(5)

L = 5 ζ(5), ζ(7)

L = 6 ζ(5), ζ(7), ζ(9)

L = 7 ζ(7), ζ(9), ζ(11)

L = 8 ζ(7), ζ(9), ζ(11), ζ(13)

L = 9 ζ(9), ζ(11), ζ(13), ζ(15)

L = 10 ζ(9), ζ(11), ζ(13), ζ(15), ζ(17)

L = 11 ζ(11), ζ(13), ζ(15), ζ(17), ζ(19)

Table 1. Transcendental terms produced for different values of L

This particular behaviour is also confirmed by the general expressions we guessed for

a subset of the relevant classes of integrals.

Using the recurrence relations obtained from the triangle rules, one can in principle

compute the exact anomalous dimension for any single-impurity, length-L operator at the

critical loop order L.
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A Details on the computation of the integrals

A.1 Triangle rules

In this section we present the generalization of the triangle rule of [35] to the case of lines

with momenta in the numerators, and show how they can be used to obtain recurrence

relations for the integrals we need.

All the rules we need can be obtained from the following integration by parts identity,

which is valid for α+ β + 1 −D/2 − dim(f)/2 > 0:

0 =

∫

dDl
∂

∂lµ
f(l)lµ

(l + p1)2α(l + p2)2β l2

=

∫

dDl

(

∂µf(l)lµ +Df(l)

− 2f(l)lµ
(

α
(l + p1)µ
(l + p1)2

+ β
(l + p2)µ
(l + p2)2

+
lµ

l2

))

1

(l + p1)2α(l + p2)2β l2

=

∫

dDl

(

∂µf(l)lµ

− f(l)

(

α
l2 + (l + p1)

2 − p2
1

(l + p1)2
+ β

l2 + (l + p2)
2 − p2

2

(l + p2)2
−D + 2

))

1

(l + p1)2α(l + p2)2β l2

– 11 –
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=

∫

dDl

(

∂µf(l)lµ−

(

α
l2−p2

1

(l+p1)2
+β

l2−p2
2

(l+p2)2
+α+β+2−D

))

f(l)

(l+p1)2α(l+p2)2β l2
.

(A.1)

For f(l) = 1 we recover the scalar rule of [35]

α

β

= ∆(α, β)
h(α, β)

+C(α, β)

α + 1

β

+C(β, α)
α

β + 1

, (A.2)

where

∆(α, β) = −
αG(α + 1, β) + βG(α, β + 1)

α+ β + 2 −D
,

C(α, β) =
α

α+ β + 2 −D
,

h(α, β) = α+ β + 1 −D/2 ,

G(α, β) =
1

(2π)D

∫

dDl

l2α(l + p)2β

∣

∣

∣

p2=1
=

Γ(α+ β −D/2)Γ(D/2 − α)Γ(D/2 − β)

(4π)D/2Γ(α)Γ(β)Γ(D − α− β)
.

(A.3)

If we take f(l) = lν we obtain the first generalized rule

α

β

= ∆−(α, β)
h(α, β)

− ∆+(α, β)
h(α, β)

+ C̃(α, β)

α + 1

β

+ C̃(β, α)

α

β + 1

,

(A.4)

where

∆±(α, β) = ∆1(α, β) ± ∆̃(α, β) ,

∆1(α, β) =
(α− β)G(α, β) − αG(α + 1, β − 1) + βG(α − 1, β + 1)

2(α+ β + 1 −D)
,

∆̃(α, β) = −
αG(α + 1, β) + βG(α, β + 1)

2(α+ β + 1 −D)
,

C̃(α, β) =
α

α+ β + 1 −D
.

(A.5)
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Another useful formula can be derived from the previous two:

α

β

= −
(

∆1(α, β) −
1

2
∆(α, β)

) h(α, β)

−
∆(α, β)

2(α + β + 1 −D)

(

h(α, β)
+

h(α, β)
)

+
(

C̃(α, β) − C(α, β)
)

α + 1

β

+
(

C̃(β, α) −C(β, α)
)

α

β + 1

+ C(α, β)

α + 1

β

+ C(β, α)

α

β + 1

.

(A.6)

A.2 Example of recurrence relation

As an example of a recurrence relation obtained from the triangle rules, let us consider the

computation of I
(1)
L . We can write

I
(1)
L = K

(1)
L (1, . . . , 1) , (A.7)

where K
(1)
L (α1, . . . , αL) is the integral with the same topology and numerator as I

(1)
L , but

weights α1, . . . , αL on the radial lines. Using (A.2) we find

K
(1)
L (α1, . . . , αL) = ∆(αL−2, αL−1)K

(1)
L−1(α1, . . . , αL−3, h(aL−2, αL−1), αL)

+ C(αL−2, αL−1)G(αL−3, αL−2 + 1)K
(1)
L−1(α1, . . . , g(αL−3, αL−2 + 1), αL−1, αL)

+ C(αL−1, αL−2)G(αL−1 + 1, αL)K
(1)
L−1(α1, . . . , αL−2, g(αL−1 + 1, αL)) ,

(A.8)

where g(α, β) = α+ β −D/2 and h is defined in eq. (A.5).

We can go on applying eq. (A.2) until we obtain K
(1)
5 in terms of K

(1)
4 . Then, using

the generalized rules, we can compute K
(1)
4 explicitly.

One can deal with integrals I
(2)
L and I

(3)
L in the same way, using eq. (A.2) down to five

and six loops respectively. For the general case I
(j)
L with j ≥ 4, eq. (A.2) must be applied

on both sides of the integrals to reduce them to seven loops.

A.3 GPXT in p-space

We are interested in the pole part of the integrals I
(j)
L and PL given in figure 11. Thereby,

the relation (2.12) implies that the independent non-vanishing integrals are represented by

1 ≤ j ≤ [L2 ], where [x] denotes the integer part of x.

Instead of solving the integrals in x-space, we work directly in p-space. This has signif-

icant advantages: one does not have to shift the derivatives to the root vertex. Therefore,
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one does not encounter the problem to compute several integrals with subdivergences which

combine to the required integral. Furthermore, the number of integration points is reduced

by one. The calculation can therefore be pushed to higher loop order. We first write the

required integral as the following linear combination

I
(j)
L = J

(j)
L − J

(j+1)
L , (A.9)

where

J
(k)
L =

x1 xk−1

xk

xk+1

xL

=
1

(2π)LD

∫

dD p1 . . . d
D pL p1 · pk

p4
1p

2
2 . . . p

2
L(p1 − p2)2 . . . (pL−1 − pL)2(pL − p1)2

.

(A.10)

The p-space graphs of the integrals J
(k)
L which we need for 1 ≤ k ≤ K, K = [L2 ] + 1

hence read

J
(1)
L = PL = p1

pL

, J
(k)
L = p1

pk−1 pk

pk+1

pL

2
. (A.11)

Where the number at a line denotes the weight of the propagator. We apply GPXT [37] to

the above integrals in p-space. The propagators are first expanded in terms of Gegenbauer

polynomials C
(1)
i (x) (which in this case are the Chebyshev polynomials of the second kind).

Then, the angular integrals are performed. This yields

J
(1)
L =

1

(2π)LD

ΩL
D−1

2L

∞
∑

i=0

(

1

i+ 1

)L−1

R
(1)
λ (i) ,

J
(k)
L =

1

(2π)LD

ΩL
D−1

2L

1

2

∞
∑

i=0

j+1
∑

i=|j−1|
i6=j

(

1

i+ 1

)L−k+1( 1

j + 1

)k−2

D1(j, 1, i)C
(1)
i (1)R

(k)
λ (i, j) ,

(A.12)

where ΩD−1 is the volume of the (D−1)-dimensional unit sphere,D1(j, 1, i) are the Clebsch-

Gordan coefficients of the Gegenbauer polynomials, and the radial integrals are given by

R
(1)
λ (i) =

∫ ∞

R

d r1 . . . d rL (r1 . . . . . . rL)λ−1

maxr1r2 . . .maxrL−1rL
maxrLr1

(

minr1r2

maxr1r2

. . .
minrL−1rL

maxrL−1rL

minrLr1

maxrLr1

)
i
2

,

R
(k)
λ (i, j) =

∫ ∞

R

d r1 . . . d rL r
λ− 3

2
1 r

λ− 1
2

k (r2 . . . rk−1rk+1 . . . rL)λ−1

maxr1r2 . . .maxrL−1rL
maxrLr1

×

(

minr1r2

maxr1r2

. . .
minrk−1rk

maxrk−1rk

)
j

2
(

minrkrk+1

maxrkrk+1

. . .
minrL−1rL

maxrL−1rL

minrLr1

maxrLr1

)
i
2

.

(A.13)

we have introduced a regulator R as a lower bound for the momentum integration. This

cuts out the infrared regime of the integrals and hence does not affect the pole part we are

– 14 –
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interested in.1 While it is simple to directly evaluate the above integrals for small L, it

becomes very tedious at larger L. We found that it is advantageous to set up a recurrence

relation for the radial integrals.

The starting point is the integral

I1(a1, b1, b2, c1, c2; r0, r2) =

∫ ∞

R
d r1 r

a1
1 maxb1

r0r1
maxb2

r1r2
minc1

r0r1
minc2

r1r2

∣

∣

∣

r0≥r2

= −
Ra1+c1+c2+1rb1

0 r
b2
2

a1 + c1 + c2 + 1
+

rb1
0 r

c2
2

a1 + b2 + c1 + 1

(

(b1 − c1)r
a1+b2+c1+1
0

a1 + b1 + b2 + 1
+

(b2 − c2)r
a1+b2+c1+1
2

a1 + c1 + c2 + 1

)

,

(A.14)

where we assume that the constants a1, b1, b2, c1, c2 are such that the upper boundary

does not contribute. Longer chains of integration are defined as

In(a1, . . . , an, b1, . . . , bn+1, c1, . . . , cn+1; r0, rn+1)

=

∫ ∞

R
d r1 . . . d rn r

a1
1 . . . ran

n maxb1
r0r1

maxb2
r1r2

. . .maxbn+1
rnrn+1

minc1
r0r1

minc2
r1r2

. . .mincn+1
rnrn+1

∣

∣

∣

r0≥rn+1

.

(A.15)

It is important to remark that for the remaining domain r0 < rn+1 the result is obtained

by simply reverting the order (a1, . . . , an) → (an, . . . , a1), (b1, . . . , bn+1) → (bn+1, . . . , b1),

(c1, . . . , cn+1) → (cn+1, . . . , c1) and by also exchanging r0 ↔ rn+1.

We can then obtain a recurrence relation for the (n + 1)-fold integral for the regime

r0 ≥ rn+2 by explicitly evaluating the integration of rn+1 in

In+1(a1, . . . , an+1, b1, . . . , bn+2, c1, . . . , cn+2; r0, rn+2) .

If we assume again that there are no contributions from the integral boundary at infinity,

guaranteed by the values of the constants ai, bi, ci, and that the integrands are always

polynomials, we find the following rule

In+1(a1, . . . , an+1, b1, . . . , bn+2, c1, . . . , cn+2; r0, rn+2)

=
[

(r
bn+2

n+2 r
an+1+cn+2

n+1 − r
an+1+bn+2

n+1 r
cn+2

n+2 )

In(a1, . . . , an, b1, . . . , bn+1, c1, . . . , cn+1; r0, rn+1)
]

rα
n+1→

1
α+1

rα+1
n+2

−
[

r
an+1+cn+2

n+1 r
bn+2

n+2 In(a1, . . . , an, b1, . . . , bn+1, c1, . . . , cn+1; r0, rn+1)
]

rα
n+1→

1
α+1

Rα+1

+
[

r
an+1+bn+2

n+1 r
cn+2

n+2 (In(a1, . . . , an, b1, . . . , bn+1, c1, . . . , cn+1; r0, rn+1)

− In(an, . . . , a1, bn+1, . . . , b1, cn+1, . . . , c1; rn+1, r0))
]

rα
n+1→

1
α+1

rα+1
0

,

(A.16)

where the replacement means that one first collects all factors of rn+1 within each term of

the corresponding expression in brackets, and then replaces the appearing factor rn+1 with

exponent α as indicated. This mimics the integrations and can be easily evaluated with

1In this case, where no infrared divergences are present, one can safely set R = 0 as long as one keeps

factors Rλ−1 = R−ε
→ 1
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a computer. To obtain the final closed chain of integrations, we first abbreviate the chain

with equal weights as

In(a, b, c; r0, rn+1) = In(a, . . . , a, b, . . . , b, c, . . . , c; r0, rn+1) . (A.17)

Two open chains are then fused by identifying the respective first and second coordinate ar-

gument and then integrating over both arguments with appropriate additional power factors

of these arguments. Using again the replacement rule to mimic the integrations, the com-

binations we need for the radial integrals are then obtained from the open chains as follows

IL(a1, . . . , aK , b1, . . . , bK−1, c1, . . . , cK−1, a, b, c)

=
[

[

ra1
1 r

aK

K (IK−2(a2, . . . , aK−1, b1, . . . , bK−1, c1, . . . , cK−1; r1, rK)IL−K(a, b, c; r1, rK)

−IK−2(aK−1, . . . , a2, bK−1, . . . , b1, cK−1, . . . , c1; rK , r1)IL−K(a, b, c; rK , r1))
]

rα
1 →

1
α+1

rα+1
K

+
[

ra1
1 r

aK

K IK−2(aK−1, . . . , a2, bK−1, . . . , b1, cK−1, . . . , c1; rK , r1)

IL−K(a, b, c; rK , r1)
]

rα
1 →

1
α+1

Rα+1

]

rα
K
→ 1

α+1
Rα+1

.

(A.18)

The required radial integrals R
(1)
λ (i) and R

(k)
λ (i, j) in (A.13) are then directly given by the

above expression with respectively chosen constants. For R
(1)
λ (i) the constants become

a1 = · · · = aK = a = λ− 1 , b1 = · · · = bK−1 = b = −1 −
i

2
, c1 = · · · = cK−1 = c =

i

2
,

(A.19)

while for R
(k)
λ (i, j) we take the above values except for the the following constants

a1 = λ−
3

2
, ak = λ−

1

2
, b1 = · · · = bk−1 = −1 −

j

2
, c1 = · · · = ck−1 =

j

2
. (A.20)

With this procedure, we could find analytic expressions for the integrals up to L = 11

which are listed below.

A.4 Integrals up to L = 11

Here we show the explicit results for the integrals I
(j)
L which are relevant for the computation

of anomalous dimensions up to L = 11.

I
(1)
4 =

1

(4π)8
1

ε

[

1

2
ζ(3) +

5

2
ζ(5)

]

,

I
(1)
5 =

1

(4π)10
1

ε
[ 2 ζ(5) + 7 ζ(7)] ,

I
(1)
6 =

1

(4π)12
1

ε

[

2

3
ζ(5) +

35

6
ζ(7) + 21 ζ(9)

]

,

I
(1)
7 =

1

(4π)14
1

ε
[ 3 ζ(7) + 18 ζ(9) + 66 ζ(11)] ,

I
(1)
8 =

1

(4π)16
1

ε

[

3

4
ζ(7) +

21

2
ζ(9) +

231

4
ζ(11) +

429

2
ζ(13)

]

,
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I
(1)
9 =

1

(4π)18
1

ε

[

4 ζ(9) +
110

3
ζ(11) +

572

3
ζ(13) + 715 ζ(15)

]

,

I
(1)
10 =

1

(4π)20
1

ε

[

4

5
ζ(9) +

33

2
ζ(11) +

1287

10
ζ(13) +

1287

2
ζ(15) + 2431 ζ(17)

]

,

I
(1)
11 =

1

(4π)18
1

ε
[ 5 ζ(11) + 65 ζ(13) + 455 ζ(15) + 2210 ζ(17) + 8398 ζ(19)] ,

I
(2)
4 =

1

(4π)8
1

ε

[

−
3

2
ζ(3) +

5

2
ζ(5)

]

,

I
(2)
5 =

1

(4π)10
1

ε
[ −4 ζ(5) + 7 ζ(7)] ,

I
(2)
6 =

1

(4π)12
1

ε

[

−
10

3
ζ(5) −

49

6
ζ(7) + 21 ζ(9)

]

,

I
(2)
7 =

1

(4π)14
1

ε
[ −12 ζ(7) − 24 ζ(9) + 66 ζ(11)] ,

I
(2)
8 =

1

(4π)16
1

ε

[

−
21

4
ζ(7) −

75

2
ζ(9) −

297

4
ζ(11) +

429

2
ζ(13)

]

,

I
(2)
9 =

1

(4π)18
1

ε

[

− 24 ζ(9) −
385

3
ζ(11) −

715

3
ζ(13) + 715 ζ(15)

]

,

I
(2)
10 =

1

(4π)20
1

ε

[

−
36

5
ζ(9) −

187

2
ζ(11) −

4433

10
ζ(13) −

1573

2
ζ(15) + 2431 ζ(17)

]

,

I
(2)
11 =

1

(4π)18
1

ε
[ −40 ζ(11) − 364 ζ(13) − 1547 ζ(15) − 2652 ζ(17) + 8398 ζ(19)] ,

I
(3)
6 =

1

(4π)12
1

ε

[

20

3
ζ(5) −

14

3
ζ(7)

]

,

I
(3)
7 =

1

(4π)14
1

ε
[ 15 ζ(7) − 6 ζ(9)] ,

I
(3)
8 =

1

(4π)16
1

ε

[

63

4
ζ(7) +

81

2
ζ(9) −

99

4
ζ(11)

]

,

I
(3)
9 =

1

(4π)18
1

ε

[

56 ζ(9) +
440

3
ζ(11) −

286

3
ζ(13)

]

,

I
(3)
10 =

1

(4π)18
1

ε

[

144

5
ζ(9) + 209 ζ(11) +

2431

5
ζ(13) −

715

2
ζ(15)

]

,

I
(3)
11 =

1

(4π)18
1

ε
[ 135 ζ(11) + 819 ζ(13) + 1638 ζ(15) − 1326 ζ(17)] ,

I
(4)
8 =

1

(4π)16
1

ε

[

−
105

4
ζ(7) −

15

2
ζ(9) +

165

4
ζ(11)

]

,

I
(4)
9 =

1

(4π)18
1

ε
[ −56 ζ(9) − 55 ζ(11) + 143 ζ(13)] ,

I
(4)
10 =

1

(4π)18
1

ε

[

−
336

5
ζ(9) − 231 ζ(11) −

429

5
ζ(13) +

1001

2
ζ(15)

]

,
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I
(4)
11 =

1

(4π)18
1

ε
[ −240 ζ(11) − 936 ζ(13) − 182 ζ(15) + 1768 ζ(17)] ,

I
(5)
10 =

1

(4π)18
1

ε

[

504

5
ζ(9) + 154 ζ(11) −

1144

5
ζ(13)

]

,

I
(5)
11 =

1

(4π)18
1

ε
[ 210 ζ(11) + 546 ζ(13) − 637 ζ(15)] .
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